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Abstract

Multimodal sentiment analysis (MSA) and multimodal
emotion recognition (MER) tasks have gained a surge of
attention in recent years. Although both tasks share com-
mon ground in many ways, they are often treated as a sep-
arate task. In this work, we propose, EASUM, a new train-
ing scheme for bridging the MSA and MER tasks. EASUM
aims to bring mutual benefits to both tasks based on the
premise that the sentiment and emotion are closely related;
hence each information should provide deeper insight into
one’s affective state to complement the other. We exploit this
premise to further improve the performance of each task by
1) first training a domain general model using four bench-
mark datasets from the MSA and MER tasks: CMU-MOSI,
CMU-MOSEI, MELD, and IEMOCAP. Depending on the
dataset, the domain general model learns to predict sen-
timent or emotion values based on the domain invariant
features. 2) Then these values are later used as auxiliary
pseudo labels when training a domain specific model for
each task. Our premise as well as new training scheme are
validated through extensive experiments on the four bench-
mark datasets. The results also demonstrate that the pro-
posed method outperforms the state-of-the-art on the CMU-
MOSI, CMU-MOSEI, and MELD datasets, and performs
comparable to the state-of-the-art on the IEMOCAP dataset
while using approximately 40% fewer parameters.

1. Introduction

Computing one’s affective states can be a challenging,
yet a niche task. Sentiment analysis and emotion recogni-
tion, tasks designed for this purpose, traditionally relied on
analyzing textual data [49]. However, using text data alone
can lead to suboptimal understanding of emotions or senti-
ment expressed in communication as humans communicate
not only through words, but also through facial expressions
and vocal intonation [32].

Multimodal sentiment analysis (MSA) and multimodal

emotion recognition (MER) seek to address this limitation
by incorporating multiple modes of communication simul-
taneously. Thanks to the explosion of online content in re-
cent years, contemporary sentiment analysis and emotion
recognition go beyond merely analyzing texts: these days,
additional data such as tone of voice and facial expres-
sions are also considered. This not only allows deep learn-
ing models to have a more comprehensive understanding of
one’s affective states, but also helps the model to more ac-
curately predict data that are more nuanced [39].

With the prominence of MSA and MER in the deep
learning community, numerous models for these tasks have
been developed [13,16,19,27,39,47,55]. However, the ma-
jority of these models target each task independently. While
they are distinctive to one another, sentiment and emotion
are closely related and often display high cohesiveness [34].
Sentiment is often associated with the polarity of affective
states such as positive, negative, or neutral. Emotion, on
the other hand, refers to a specific affective state such as
happiness, sadness, anger, fear, etc. Therefore, analyzing
sentiment can provide insights into the latent emotions and
vice versa. For instance, a positive sentiment could come
from a feeling of joy or excitement, while a negative senti-
ment may be driven by anger or fear. Hence, knowing both
sentiment and emotion can provide a richer understanding
of one’s affective state and can help each other to enhance
the accuracy of both sentiment analysis and emotion recog-
nition tasks.

Motivated by this observation, this paper aims to bring
a solution to uniting MSA and MER by utilizing both sen-
timent and emotion information for each task. While prior
works that explore this idea exist [1,17], their count remains
quite minimal. We speculate this is partly due to the lack of
datasets that contain both sentiment and emotion annota-
tions, which usually stems from the labor-intensive nature
of the data annotation job. To address this issue, different
from the previous studies, our work approaches this prob-
lem from a domain generalization perspective. More specif-
ically, we first train a domain general model using both
MSA and MER benchmark datasets to diminish the distri-
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bution gap between the these datasets so that the model can
predict sentiment and emotion values based on the domain-
invariant features. Subsequently, we leverage the predic-
tion made by the domain general model to boost the perfor-
mance of individual tasks.

It has been shown through many studies [4,31,36,45,52,
52,53,60] that domain general models can be developed by
training a model using different yet related domains. Simi-
larly, benchmark datasets for the MSA and MER tasks are
drawn from different sources, resulting in inherently dis-
tinct data distributions. Despite the difference, MSA and
MER datasets share a common objective; that is, they are
all used to compute individuals’ affective states. For this
reason, we posit that they exhibit analogous traits within a
latent semantic space. This expectation provides a founda-
tion for implementing domain generalization in our work.
To achieve this, motivated by [17], we leverage the CMU-
MOSI and CMU-MOSEI datasets for the MSA task, and the
MELD and IEMOCAP datasets for the MER task. We ex-
ploit the underlying similarities between these datasets by
employing a domain alignment technique.

To this end, we propose EASUM, a training scheme for
enhancing affective state understanding through joint sen-
timent and emotion modeling for multimodal tasks. EA-
SUM is divided into two phases: 1) in the first phase, we
focus on training a domain general (DG) model by align-
ing the four datasets at both domain and category levels. A
moment matching technique is employed for domain-level
alignment. To achieve category-level alignment, we har-
ness classifiers that predict sentiment and emotion values
using the domain invariant features obtained through the
moment matching technique. 2) In the second phase, we fo-
cus on training a domain specific (DS) model for each task.
The domain specific model has a two stream structure: the
first stream employs the pretrained DG model from the first
phase to generate pseudo labels; the second stream utilizes
these pseudo labels as auxiliary supervision during training
to enhance performance of each task.

Through this training scheme, we show that the auxil-
iary information gained from the DG model can indeed help
boost performance for both tasks. Further, we show the
quality of the pseudo labels are adequate. The main con-
tributions of our work can be summarized as follows:

• We propose EASUM, a two phase training scheme,
where in the first phase, the DG model explores the
underlying commonality between the MSA and MER
tasks, while in the second phase, the DS model lever-
ages the information gained from the DG model to en-
hance the performance of both tasks.

• To the best of our knowledge, our work is the first work
to apply domain generalization in the MSA and MER
fields and build a DG model from a mix of MSA and

MER benchmark datasets.

• Our training scheme is viable to other sentiment and
emotion datasets and can easily be expanded to cope
with more datasets.

• Our results consistently surpass the current state-
of-the-art on CMU-MOSI and MELD datasets and
are comparable to, and sometimes surpass the cur-
rent state-of-the-art on CMU-MOSEI and IEMOCAP
datasets.

2. Related Work
MSA and MER. Many MSA studies focused on im-

proving the performance by better modeling joint repre-
sentations of text, audio, and video. Some of the prime
works include using multi-dimensional tensor [55], atten-
tion mechanism [56,57], multi-stage fusion [23], and Trans-
former architecture [6, 39, 47]. Recent works [19, 54] have
shown importance of incorporating modality-specific infor-
mation in addition to the joint representation via multi-task
learning. In the MER task, [18] and [56] used GCN and
attention for fusion. [13] and [21] both proposed a context-
aware model using a memory network and GNN to model
complex dynamics and dependencies in dialogues. More-
over, there have been attempts to solve both MSA and MER
tasks via multi-task learning [1] and creating universal la-
bels [17]. However, [1] requires a dataset that contains
both sentiment and emotion annotations, and [17] only uses
textual information when generating the universal labels,
which can lead to suboptimal understanding of one’s affec-
tive state. Our work, on the other hand, utilizes all three
modalities to reach optimal understanding of one’s affective
state when generating pseudo labels.

Domain Alignment. Domain alignment refers to the
process of aligning feature distributions across different
training domains. It is a technique that is widely used
in unsupervised domain adaptation (UDA) to reduce do-
main shift between source and target domains. One popular
method used for domain alignment is Maximum Mean Dis-
crepancy (MMD), which reduces the distance between fea-
ture distributions of different domains [11,28,29,50]. Other
commonly used methods include correlation alignment [3,
37,41,42] and adversarial-based approach [10,26,48]. Fur-
ther, various moment matching methods have been pro-
posed to reduce domain discrepancy. For instance, [33] ap-
plied GAN to align the mean and covariance of two different
data distributions, [36] utilized moment matching for multi-
source domain adaptation, and [4] employed higher-order
moment matching to better represent feature distribution in
each domain. In this work, we explore both MSA and MER
tasks using a moment matching method to learn domain-
invariant features by minimizing distribution discrepancies
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Figure 1. The overall architecture of EASUM. The upper half of the figure shows the first phase of our model whose purpose is to train a
domain general (DG) model which can classify a sentiment polarity (ŷs) from the CMU-MOSI, -MOSEI datasets and an emotion category
(ŷe) from the MELD, IEMOCAP datasets based on the domain-invariant features. The lower half of the model shows the second phase of
our model whose purpose is to perform the MSA and MER tasks using the pretrained DG model to obtain pseudo labels (y∗

a) for auxiliary
supervised learning. For example, in case of the CMU-MOSI dataset which only contains sentiment annotations (ym), the pretrained DG
model is used to generate pseudo labels for an emotion category (y∗

a) for the auxiliary supervised learning. The red dashed box indicates
the pretrained weights from the first phase are loaded in the second phase without further updates (` indicates the model is frozen), while
the red solid box indicates the pretrained weights from the first phase are loaded and further updated through training.

across the MSA and MER datasets. Subsequently, we ad-
dress each task independently while leveraging the informa-
tion yielded from the domain-invariant features to enhance
the performance of each task.

3. Methodology

3.1. Problem Definition

Each training domain, Di = {D1,D2, ...,Dn}, has input
which is composed of three types of modalities-text, audio,
and video (Xm

i ), where m ∈ {t, a, v}. The goal of the
MSA and MER tasks is to take this multimodal input and
predict a sentiment intensity ŷs ∈ R and an emotion cat-
egory ŷe ∈ Yi, respectively, where Yi is an emotion label
space of the ith training domain.

3.2. Model Overview

As shown in Figure 1, the proposed EASUM is divided
into two phases. The first phase trains a domain general
model which is composed of feature extractors (for au-
dio and video), fusion module, multimodal representation
learning module, moment matching component, and two

classifiers. The moment matching component minimizes
the moment-related distance to align data distributions of
the four datasets. The “Senti FC” and “Emo FC” are used
for classifying a sentiment polarity (positive, neutral, nega-
tive) from the MSA datasets, and an emotion category from
the MER datasets using the domain invariant features, re-
spectively. The second phase trains a domain specific model
which closely resembles the first phase model excluding the
moment matching component. The second phase model uti-
lizes the domain general model to generate pseudo labels to
better perform the MSA and MER tasks.

3.3. First Phase: Training DG Model

We have four training domains Di∈{1,2,3,4} where do-
mains 1, 2, 3, and 4 indicate MOSI, MOSEI, MELD, and
IEMOCAP, respectively. The input data and the corre-
sponding labels for the ith training domain are Xm

i =
{xm

i,j}
Ni
j=1 and Yi = {yi,j}Ni

j=1, where Ni is the number
of ith training domain data and xm

i,j ∈ Rlm×dm , where
lm is a sequence length, and dm is a feature dimension
of m-modality. This indicates the data from different do-
mains share the same feature space. However, not all do-
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mains share the same label space. For instance, Yi∈{1,2} =

{yi,j}Ni
j=1, where yi,j ∈ R is a sentiment intensity, while

Yi∈{3,4} = {yi,j}Ni
j=1, where yi,j ∈ Yi is an emotion cate-

gory. The goal is to learn a model that is generalized to all
training domains.

Feature Extraction. Following [17], we use acoustic
data that have been processed using librosa [30] and visual
data that have been extracted from efficientNet [44] that has
been pretrained on VGGFace [35] and AFEW [8] datasets.

Data Augmentation and Processing. We use CMU-
MOSI and CMU-MOSEI datasets from the MSA task; and
MELD and IEMOCAP datasets from the MER task to train
a model that has general understanding of humans’ affec-
tive states. To train a DG model, we begin by balancing
the number of training samples across domains by applying
data augmentation. See Table 1 for the data split of each
dataset. In [22], it has been found that perturbing data in
the feature space with Gaussian noise during training is not
only a great way to augment data, but it also leads to a clas-
sifier with domain-generalization performance. We adopt
this data augmentation technique to the visual and audio
features extracted from efficientNet [44] and librosa [30]
as follows:

X̂
m

i = α⊙Xm
i + β,

where α ∈ RNi×lm×dm and β ∈ RNi×lm×dm are the noise
samples taken from normal distribution, and ⊙ denotes
element-wise multiplication. Specifically, α ∼ N (1, I) and
β ∼ N (1, I), where I is the identity matrix. For the text
data augmentation, we perform a random temporal zero-
out [5, 24], an efficient textual data augmentation method
which randomly drops parts of the information within an
input sentence, after the input embedding.

Note that the emotion label spaces for the MELD and
IEMOCAP datasets are incongruent. In order to create a
new comprehensive label space for the MER task, we merge
emotion categories in each dataset. The resulting common
emotion label space, Y , consists of 9 emotion categories:
happy, angry, sad, neutral, excited, frustrated, fear, disgust,
and surprise. We also convert the sentiment intensity (ys ∈
R) to the sentiment polarity (ys ∈ R3) in the MOSI and
MOSEI datasets.

Fusion. The idea that word representation can shift
based on acoustic and visual information was used as a way
to fuse textual, acoustic, and visual data [39, 51]. Borrow-
ing the name from [39], we also use Multimodal Adaptation
Gate (MAG) to obtain a fused representation of text, audio,
and video data. MAG receives text embedding, acoustic
and visual features as inputs and calculates the displace-
ment that occurs in the textual semantic space by introduc-
ing acoustic and visual data. The displacement is calculated
using a gating mechanism as follows:

Ri = ga(WaX̂
a

i ) + gv(WvX̂
v

i ) + b,

with
ga = ReLU(Wga[X̂

t

i; X̂
a

i ]) + ba,

gv = ReLU(Wgv[X̂
t

i; X̂
v

i ]) + bv,

where Wga and Wgv are weight matrices of gating mech-
anism for visual and acoustic modality, and ba and bv are
biases. By using this displacement, the fused representation
can be computed as follows:

F i = X̂
t

i + λRi,

with

λ = min(
∥X̂

t

i∥2
∥Ri∥2

γ, 1),

where γ is a hyperparameter, and ∥ ·∥2 is L2 normalization.
Multimodal Learning. The fused representation is used

as an input to the ConvBERT encoder [20] to learn a mean-
ingful multimodal representation. ConvBERT is an im-
proved version of BERT [7] which uses a mixed attention
block that integrates span-based dynamic convolution and
self-attention. The span-based dynamic convolution can
capture local dependency more effectively and efficiently
by generating local relation of the input token conditioned
on its local context instead of a single token. By incorporat-
ing span-based dynamic convolution head instead of rely-
ing entirely on the global self-attention block which suffers
large memory footprint and computation cost, ConvBERT
can better model both global and local dependencies with
reduced redundancy. ConvBERT also projects the embed-
ding feature to a smaller dimension space, adopting a bot-
tleneck design. This significantly reduces computational
costs within the self attention mechanism and forces atten-
tion heads to produce more compact and useful information.
Moreover, a grouped linear operator is applied to the feed-
forward to further reduce parameters while maintaining the
representation power. The multimodal representation ex-
tracted from ConvBERT is denoted as follows:

M i = ConvBERT (F i; θ
ConvBERT ) ∈ RNi×l×d,

where θConvBERT is the learnable parameters of Con-
vBERT.

Learning Domain Invariant Features. We use the mul-
timodal representation obtained from ConvBERT to per-
form domain alignment which is a crucial aspect in training
a domain general model. From numerous domain alignment
techniques available, we opt for the moment matching tech-
nique, which has demonstrated its effectiveness in the field
of multi-source domain adaptation [36]. To align data dis-
tribution across domains, we minimize the k order moment
distance between the multimodal representation of different
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domains. The k order moment distance between two do-
mains is calculated as follows:

MD(Di,Dj) =

2∑
k=1

∥E(Mk
i )− E(Mk

j )∥2.

Then the total moment distance between all training do-
mains becomes as follows:

MDtotal =

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

MD(Di,Dj),

where n is the number of training domains.
DG Model Training Objective. Lastly, the sentiment

polarity (ŷs) and emotion categories (ŷe) are predicted us-
ing the multimodal representation of the MSA and MER
datasets, respectively, through two independent fully con-
nected (FC) layers as follows:

ŷt = WtM i + bt,

where t ∈ {s, e}. Note, the FC layers share parameters for
the same task. The overall objective function becomes

LDG =

n∑
i=1

LDi
(ŷt, yt) + ωMDtotal,

where LDi
is the softmax cross entropy loss for each do-

main, and ω is the trade-off parameter.

3.4. Second Phase: Training DS Model

After learning the DG model, we train the second phase
model which has a two-stream structure. The upper stream,
referred to as the DG stream, is employed to generate
pseudo labels using the pretrained DG model from the first
phase, where its weights remain frozen and are not further
trained. The lower stream, referred to as the DS stream,
is utilized for conducting the MSA and MER tasks with the
assistance of pseudo labels serving as auxiliary supervision.
The DS model is largely similar to the DG model except that
DeBERTa [15] is used to learn a multimodal representation.

DeBERTa [15] is an improved version of BERT [7] and
RoBERTa [61] by using a disentangled attention mecha-
nism and enhanced mask decoder. Specifically, each word
is represented with the content and position vectors, and
the attention weights are calculated using disentangle ma-
trices based on words’ contents and relative positions. De-
BERTa’s new enhanced mask decoder incorporates abso-
lute word position embedding to decode the masked words
based on the aggregated contextual embeddings of word
contents and relative positions. Moreover, DeBERTa uses
a scale invariant fine-tuning technique to improve the train-
ing stability and generalization by applying perturbations to
the normalized word embedding. Implementation of these

methods allowed DeBERTa’s enhanced efficiency as well
as improved performance on downstream tasks. The do-
main specific multimodal representation extracted from De-
BERTa is denoted as

M = DeBERTa(F ; θDeBERTa) ∈ RB×l×d,

where B is a batch size, F is the fused representation ob-
tained from MAG, and θDeBERTa is the learnable parame-
ters of DeBERTa.

The multimodal representations obtained from De-
BERTa are then passed to a set of two classifiers: one for
predicting sentiment and the other for emotion category.
One of the classifiers is trained using the annotations in the
dataset, while the other classifier is trained using the pseudo
labels obtained from the DG stream. For instance, in the
case of the CMU-MOSI dataset which contains sentiment
annotation, the DS model is trained using the sentiment an-
notation from the dataset as well as the emotion pseudo la-
bels generated from the DG stream.

Soft Pseudo Labels. Soft labels, which are often used
in semi-supervised learning [25] and knowledge distilla-
tion [53], represent the likelihood of a data sample belong-
ing to each class; therefore, they provide a more flexible
representation of the class probabilities. For this reason,
soft labels can be more informative than hard labels because
they provide richer information about the uncertainty of the
model’s prediction [40]. Futher, they reduce biases pertain-
ing to particular datasets [9]. Motivated by this, we use soft
labels for the pseudo labels generated from the DG stream,
hence the name - soft pseudo label, to supervise auxiliary
learning using Kullback-Leibler (KL) divergence.

DS Model Training Objective. Then the training objec-
tive of our DS model becomes

LDS(ŷm, ym, ŷa, y
∗
a) = Ltask(ŷm, ym)+ηLKLdiv(ŷa, y

∗
a),

where ŷm, ym are the DS model’s prediction and the ground
truth label for the main task learning, and ŷa, y∗a are the DS
model’s prediction and the soft pseudo label for the auxil-
iary learning. Ltask(ŷm, ym) is the MSE loss for the MSA
task and softmax cross entropy loss for the MER task. η is
the trade-off parameter, and LKLdiv(ŷa, y

∗
a) is the KL di-

vergence loss between the DS model’s auxiliary prediction
and the soft pseudo labels, which facilitates the DS model’s
auxiliary prediction to follow the soft pseudo labels.

4. Experimental Settings

4.1. Datasets

CMU-MOSI [58] dataset contains 2,199 labeled video
clips from 89 speakers. The videos are crawled from
YouTube which address opinions on movies, books, and
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products. Each video is annotated with sentiment on a [-
3,3] range. CMU-MOSEI [59] dataset contains 23,453 an-
notated video segments from 1,000 speakers addressing 250
different topics. Each video is annotated with sentiment on
a [-3,3] range as well as six discrete emotions: happy, sad-
ness, anger, disgust, surprise, and fear. We only utilize sen-
timent values in this work. IEMOCAP [2] dataset contains
approximately 12 hours of data, including video, speech,
motion capture of face, and text transcriptions. Each video
is segmented into utterances which are annotated with one
of six emotion labels: happy, sad, neutral, angry, excited,
and frustrated as well as dimensional labels such as valence,
activation and dominance. Only the emotion labels are used
in this work. MELD [38] dataset contains more than 1,400
dialogues and 13,000 utterances from the Friends TV series.
Each utterance is annotated with one of the seven emotion
classes: anger, disgust, sadness, joy(=happy), surprise, fear,
or neutral as well as sentiment polarity. In this work, we
only use emotion labels from MELD.

Table 1. Data split of the four datasets and the type of annotations
included in each dataset.

Dataset Train Valid Test Senti. Emo.

MOSI 1284 229 686 ✓ -
MOSEI 16326 1871 4659 ✓ ✓

MELD 9989 1108 2610 ✓ ✓

IEMOCAP 5354 528 1650 - ✓

4.2. Baseline Models

The baseline models for the MSA task include the fol-
lowing: LMF [27] performs multimodal fusion using low-
rank tensors. TFN [55] models intra- and inter-modality dy-
namics through multi-dimensional tensors. MFM [46] fac-
torizes representations into multimodal discriminative and
modality-specific generative factors to learn multimodal
data. ICCN [43] learns correlations between modalities
via deep canonical correlation analysis. MulT [47] uses
cross-modal attention to model interactions between asyn-
chronous modalities and latently adapt one modality to an-
other. MISA [14] learns modality-invariant and modality-
specific features to capture a holistic view of the multimodal
data. MAG-BERT [39] applies multimodal adaptation gat-
ing mechanism to BERT to model multimodal representa-
tions. MIMM [12] maximizes the mutual information in
modalities and between multimodal and unimodal represen-
tations to better preserve information. Self-MM [54] gen-
erates unimodal labels for each modality and jointly trains
multimodal and unimodal tasks. SUGRM [19] is an im-
proved version of Self-MM which recalibrates each modal-
ity and maps each modality to a common latent space to
facilitate unimodal label generation. UniMSE [17] gen-

erates universal labels based on the similarity in text em-
beddings among data samples and uses T5 model and con-
trastive learning to perform MSA and MER tasks.

The baseline models with which we compare our model
for the MER task include: LMF, TFN, MFM, UniMSE as
well as MM-DFN [16] which employs a graph-based dy-
namic fusion module to fuse multimodal contextual features
in a conversation.

4.3. Evaluation Metrics

Following the previous works [12, 17, 19, 39, 47, 54],
we evaluate our model using four metrics for the MSA
task: binary F1 score (F1), binary classification accuracy
(Acc2), Mean Absolute Error (MAE), and Pearson correla-
tion (Corr). For the MER task, we evaluate our model using
two metrics: accuracy (Acc) and weighted F1 score (w-F1).

4.4. Implementation Details

We trained our framework using NVIDIA TITAN Xp
and Intel i7-9700K. We use the batch size of 48 and AdamW
as the optimizer. We set the learning rate to 3.5e− 5 for the
IEMOCAP dataset and 1e − 5 for the rest of the datasets.
We use 8 and 3 DeBERTa encoder layers when training the
DS model for the MSA and MER task, respectively, and use
8 ConvBERT encoder layers for the DG model. The feature
dimension of the acoustic and visual representations is 64,
and the embedding size for both ConvBERT and DeBERTa
is 768. The sequence lengths of the text, acoustic, visual
representations are 40, 157, 32, respectively. We set γ to 1,
ω to 0.1, and η to 0.5 for the MOSI and MOSEI datasets,
0.1 for the IEMOCAP dataset, and 1 for the MELD dataset.

5. Results and Analysis

5.1. Quantitative Results

Table 2 shows the experimental results for the MSA task
on both CMU-MOSI and CMU-MOSEI datasets. As can
be seen in the table, our model set the new SOTA record on
the CMU-MOSI dataset across all evaluation metrics and
either surpassed or achieved nearly the SOTA results on
the CMU-MOSEI dataset. For the CMU-MOSEI dataset,
in spite of our model’s shortcoming compared to the pre-
vious SOTA results on the F1 and Acc2 metrics, the per-
formance gap between our model and the previous SOTA
model [17] is minuscule (only short by 0.16% and 0.1% on
F1 and Acc2 metrics). Further, our model outperformed the
previous SOTA results on the MAE and Corr metrics for
the CMU-MOSEI dataset, particularly achieving a notable
improvement on the Corr metric.

Additionally, Table 3 shows the experimental results for
the MER task on both MELD and IEMOCAP datasets. We
only compare our model with the prior multimodal models
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Table 2. Experimental results of our model compared to the baseline models on the CMU-MOSI and CMU-MOSEI datasets for the MSA
task. The bold numbers indicate the best performance, and ↑ indicates higher number is better, while ↓ indicates lower number is better.

Model
MOSI MOSEI

F1(%) ↑ Acc2(%) ↑ MAE ↓ Corr ↑ F1(%) ↑ Acc2(%) ↑ MAE ↓ Corr ↑

LMF [27] 82.4 82.5 0.917 0.695 82.1 82.0 0.623 0.700
TFN [55] 80.7 80.8 0.901 0.698 82.1 82.5 0.593 0.677
MFM [46] 81.6 81.7 0.877 0.706 84.3 84.4 0.568 0.703
ICCN [43] 83.0 83.0 0.862 0.714 84.2 84.2 0.565 0.704
MulT [47] 83.9 84.1 0.861 0.711 82.3 82.5 0.580 0.703
MISA [14] 82.0 82.1 0.804 0.764 84.0 84.2 0.568 0.717
MAG-BERT [39] 86.0 86.1 0.712 0.796 84.7 84.8 0.567 0.742
MIMM [12] 86.0 86.1 0.700 0.800 85.9 86.0 0.526 0.772
Self-MM [54] 86.0 86.0 0.713 0.798 85.3 85.2 0.530 0.765
SUGRM [19] 86.3 86.3 0.703 0.800 85.1 85.0 0.541 0.758
UniMSE [17] 86.42 86.90 0.691 0.809 87.46 87.50 0.523 0.773
Ours 87.18 87.20 0.663 0.828 87.30 87.40 0.520 0.791

Table 3. Experimental results of our model compared to the base-
line models on the MELD and IEMOCAP datasets for the MER
task. The bold numbers indicate the best performance.

Model
MELD IEMOCAP

w-F1 ↑ Acc ↑ w-F1 ↑ Acc ↑

LMF [27] 58.30 61.15 56.49 56.50
TFN [55] 57.74 60.70 55.13 55.02
MFM [46] 57.80 60.80 61.60 61.24
MM-DFN [16] 59.46 62.49 68.18 68.21
UniMSE [17] 65.51 65.09 70.66 70.56
Ours 65.93 66.70 69.75 70.10

Table 4. An ablation study on introducing additional modalities
on the CMU-MOSI dataset. The bold numbers indicate the best
performance, and the underlined numbers indicate the enhanced
performance by incorporating V or A modality to the T modality.

Modality F1(%) ↑ Acc2(%) ↑ MAE ↓ Corr ↑

T 86.00 85.98 0.789 0.772
T, A 85.95 85.97 0.746 0.793
T, V 86.44 86.43 0.741 0.797
T, A, V 87.18 87.20 0.663 0.828

and omit models which only use textual data for a fair com-
parison. Our model surpassed the previous SOTA results
on all metrics on the MELD datasets and achieved compa-
rable results on the IEMOCAP dataset. It is worth noting
that our model achieved above or close to the SOTA results
in the MER tasks while using only 62% of the parameters
used in the previous SOTA model [17], which used T5-base
as their base model (approx. 222.9M trainable parameters
for the T5 base model alone vs. approx. 138.5M trainable
parameters for our entire DS model).

5.2. Ablation Study

We show the results of an ablation study exploring how
introducing additional modalities contributes to the model’s
performance using CMU-MOSI dataset in Table 4. The ta-
ble shows that text is a dominant modality, showing suf-
ficient performance alone, which is in line with the previ-
ous finding [47]. The table also shows the importance of
visual and acoustic information. As can be seen in the ta-
ble, the performance of the model generally increases as
we incorporate more modalities with the exception of the
combination of text and audio modality (T, A) on the F1
and Acc2 metrics. However, from the MAE and Corr per-
spective, the model performance grows with the addition of
modalities. This demonstrates that combining text with vi-
sual and/or acoustic information can capture more nuanced
affective states that the text alone cannot otherwise. Fur-
ther, the model exhibited its optimal performance when all
modalities were used. This observation indicates that the
model is most capable of capturing an individual’s affec-
tive state comprehensively when all three modalities are uti-
lized. Moreover, we can infer from the results that the vi-
sual modality boosts the model’s performance more than the
acoustic modality.

In addition, in order to investigate the efficacy of the aux-
iliary pseudo labels, we compare the model’s performance
with and without the soft pseudo labels (SPL) in Table 5.
As can be seen in the last row of the table, including soft
pseudo labels consistently reinforces the model’s perfor-
mance gain. This empirically demonstrates the effective-
ness of introducing auxiliary information via soft pseudo la-
bels in the MSA and MER tasks. To further elaborate, in the
case of the MSA tasks, it notably benefited from introducing
the auxiliary emotion pseudo labels. However, the benefit
the sentiment pseudo labels brought to the MER tasks was
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Table 5. An ablation study on the contribution of the soft pseudo labels (SPL). ”w/o SPL” indicates the model’s performance without
the soft pseudo labels, and ”w/ SPL” indicates the model’s performance with the soft pseudo labels. ”Improv.” quantitatively shows the
performance gain by introducing the soft pseudo labels.

Model
MOSI MOSEI MELD IEMOCAP

F1 ↑ Acc2 ↑ MAE ↓ Corr ↓ F1 ↑ Acc2 ↑ MAE ↓ Corr ↓ w-F1 ↑ Acc ↑ w-F1 ↑ Acc ↑

w/o SPL 86.17 86.13 0.763 0.807 86.50 86.50 0.544 0.787 65.32 66.32 69.10 69.87
w/ SPL 87.18 87.20 0.663 0.828 87.30 87.40 0.520 0.791 65.93 66.70 69.75 70.10
Improv. 1.01 ↑ 1.07 ↑ 0.1 ↓ 0.021 ↑ 0.8 ↑ 0.9 ↑ 0.024 ↓ 0.004 ↑ 0.61 ↑ 0.38 ↑ 0.65 ↑ 0.23 ↑

Table 6. Four samples from each of the four datasets. “Annot.” indicates the sample’s annotation from the dataset, and SPL indicates the
soft pseudo labels generated from the DG stream. We show the top 3 (out of 9) emotion soft pseudo labels for the MOSI and MOSEI
datasets, where “neu”, “hap”, and “exc” denote neutral, happy, and excited.

Dataset Text Acoustic Visual Annot. SPL

MOSI
”Rango kind of

slow paced and calm 0.0
neu: ≈ 0.75, sad: ≈ 0.08,

falls into that.” hap: ≈ 0.04

MOSEI
”It’s only getting

fast paced and high-spirited 2.3
hap: ≈ 0.42, neu: ≈ 0.39,

better from now.” exc: ≈ 0.09

MELD ”You’re a genius!” low pitched and dramatic surprise
neu: ≈ 0.02, pos: ≈ 0.98,

neg: ≈ 0.00

IEMOCAP ”I’m gonna forget him.” - - disgust
neu: ≈ 0.00, pos: ≈ 0.00,

neg: ≈ 0.99

marginal compared to the opposite case. We suspect this is
because additional emotion value provides a more specific
angle to one’s sentiment, while additional sentiment value
can be vague. For instance, fear clearly indicates negative
sentiment, while negative sentiment cannot clearly indicate
whether one is disgusted or feared.

5.3. Qualitative Results

To evaluate the quality of the soft pseudo labels gener-
ated from the DG stream, we display four samples from
each of the four datasets in Table 61. We observe that the
generated soft pseudo labels are generally in parallel with
the annotations from the datasets. This shows that the soft
pseudo labels generated from the DG stream are able to
properly provide complementary information to the model,
contributing to the model’s enhanced performance. This
further confirms the efficacy and the objective of the soft
pseudo labels.

6. Conclusion
In this paper, we introduced a new training scheme

named EASUM for the MSA and MER tasks, which aims to
enhance performance of both tasks by leveraging the inter-
relation between sentiment and emotion. Specifically, our

1For the IEMOCAP dataset, only the visual and acoustic features are
available to the public (no raw video or audio available). Therefore, we
omit the acoustic and visual part of the IEMOCAP dataset in Table 6.

approach is predicated on the idea that knowing both infor-
mation (sentiment and emotion) can offer a more profound
understanding of an individual’s affective state than know-
ing just one information. To explore this idea, we utilized
four benchmark datasets from the MSA and MER tasks
and trained the domain general model to bridge the gap
among the four domains. Then, we used the domain gen-
eral model to produce pseudo labels to serve as additional
guidance when training the domain specific model for each
task. We investigated the impact of the pseudo labels on
the performance of each task and validated the effective-
ness of our training scheme through the experiments. Fur-
ther, we showed the adequacy and reliability of the pseudo
labels generated from the domain general model. Through
this training scheme, our model was able to achieve new
SOTA results on the CMU-MOSEI (on MAE, Corr met-
rics), CMU-MOSI, and MELD datasets, as well as achieve
nearly SOTA results on the IEMOCAP dataset while us-
ing approximately 40% fewer parameters compared to the
previous SOTA model, all without requiring labor-intensive
data annotation job for the additional auxiliary labels.
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