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ABSTRACT Since the Convolutional Neural Network (CNN) has surfaced and fascinated the world, many
researchers have exploited CNN for image classification, object detection, semantic segmentation, etc.
However, the conventional CNNs have a pyramidal structure and were designed to process images which
have the same size. Although some CNNs can accept images of various sizes, performance is degraded for
images smaller than the size of images used for training. In this paper, we propose MarsNet, a CNN based
end-to-end network for multi-label classification with an ability to accept various size inputs. In order to
allow the network to accept such images, dilated residual network (DRN) is modified to get higher resolution
feature maps, and horizontal vertical pooling (HVP) is newly designed to efficiently aggregate positional
information from the feature maps. Furthermore, multi-label scoring module and threshold estimation
module are employed to serve the purpose of multi-label classification. We verify the effectiveness of
the proposed network through two distinctive experiments. We first verify our model by inspecting and
classifying multiple types of defects occurred in PCB screen printer using solder paste inspection (SPI)
datasets. Secondly, we verify our network using VOC 2007 dataset. Our network is pioneering in that no
research has attempted to accomplish multi-label classification for defects in addition to being able to take
input images of various sizes in SPI field.

INDEX TERMS Convolutional neural networks, images of various sizes, multi-label classification, printed
circuit board, solder paste inspection.

I. INTRODUCTION
Ever since the idea of deep learning has emerged, there has
been booming research on deep learning due to its tremen-
dous benefits. Exceptional breakthrough of CNN has made
various computer vision applications such as image clas-
sification [1], [2], object detection [3], [4], and semantic
segmentation [5], [6] possible today. Many industries have
shifted their focus to how deep learning can be implemented
in their existing technology for a better time efficiency
as well as performance. Among many industries that have
benefited from the development of deep learning, [7], [8]
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elevated existing technology by implementing a multi-label
classification technique.

In this paper, we propose a novel end-to-end multi-label
classification for images of various sizes network (MarsNet).
Our network can be divided into two meaningful functional-
ities: an ability to receive various input sizes and multi-label
classification. When working with images, CNN is usually
utilized as a base model. Standard CNNs typically handle
same size inputs. In real life, on the other hand, the size of
images comes in a wide range; hence, in order to utilize a
standard CNN, a user has to resize the input image. But, this
is not ideal since it can cause loss or inaccuracy of contextual
information in the original image. Although fully convolu-
tional networks such as InceptionNet and ResNet work when
small size inputs are fed in, they show poor performance.
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FIGURE 1. Examples of the feature maps. (a) Given the SPI image data
with the size of 75× 121, (b) the extracted feature maps with the size of
3× 4 from nine randomly chosen filters among a total of 512 filters in the
last convolutional layer of ResNet-18.

This is because CNNs generally adopt the structure that
reduces the size of feature maps in pyramidal fashion to offset
its drawback of using an enormous number of parameters.
This way, as the size of the feature maps decreases, highly
informative features can be extracted even with a smaller
sized filter due to an increasing number of layers. However,
this kind of structure diminishes the resolution of the feature
maps extracted from the last convolutional layer which con-
tains high-level features. This phenomenon has been brought
up as an issue in image segmentation in which each pixel of
the input image has to be labeled [9]–[11].

The pyramidal structure becomes particularly problematic
when classifying inputs with the sizes smaller than 224×224
or 299 × 299 which are image sizes that were used in the
original paper for ResNet and InceptionNet, respectively,
because the size of the featuremaps decreases in proportion to
the size of an input image. For example, ResNet-18 provides
feature maps with a size that is 1/32 of the input image
size for each dimension. Consequently, when the feature
maps become too small, neither the proper learning nor the
extraction of meaningful information can occur due to the
low resolution as shown in Fig. 1. To compensate for this
disadvantage, we adopt DRN [12]. DRN replaces the con-
volutional operators with dilated convolutions [13], [14] for
some layers in ResNet. By doing this, the convolutional layers
can examine wide receptive fields by using a small size filter.
DRN generates reduced feature maps that are 8 times smaller

than the input image size for each dimension. However, if the
input image is smaller than 224 × 224, the resolution of the
last feature maps is too low to contain positional information.
Thus, we build amodified verison of DRN,mDRN, to resolve
the low resolution problem by adding more dilated convolu-
tional layers which result in feature maps that are half of the
input image size for each dimension.

In order to enable classification regardless of input image
size, typically global average pooling (GAP) is used by aver-
aging out all the features extracted from each filter after the
last convolutional layer. Later, to further investigate classi-
fication of images with multi-scale and multi-size, [15] pro-
posed spatial pyramid pooling (SPP). Similar to other existing
methods, SPP aggregates features into the same size vector
to enable classification of various sized input. Though its
remarkable achievement, their algorithm was verified with
no more than two different size input images which is not
sufficient enough and fails to address the problem of low
resolution in input images. Our work, on the other hand,
tackles the low resolution problem in input images which
leads to a disappearance of information included in a micro-
scopic part of a small image. The problem of low resolution
in input images was often addressed in the field of image
segmentation [12], [16], not particularly in image classifica-
tion. Since the mDRN, which we use to solve low resolution
problem, generates high resolution feature maps, our model
is able to aggregate more detailed location information of
the extracted feature maps. When preserving the detailed and
spatial information is required, global average pooling is not
appropriate since it can decimate detailed location informa-
tion in the extracted features. Consequently, we newly design
HVP which executes pooling by dividing the last feature
maps in horizontal and vertical directions independently such
that spatially meaningful features are preserved and extracted
from feature maps of various sizes with higher computa-
tional efficiency. Higher computational efficiency is possible
because HVP can aggregate precise positional information
with lower model complexity than Spatial Pyramid Pooling
(SPP) [15] for the same precision. Furthermore, by lower-
ing the complexity of the model, MarsNet is able to avoid
overfitting.

In order to achieve multi-label classification, our network
consists of two modules; the multi-label scoring module
and threshold estimation module. For the multi-label scoring
module, we use a sigmoid cross entropy loss [17]. Output
value of each node in the multi-label scoring module rep-
resents the score of the corresponding class. The output
value is compared to a label confidence threshold, that is
a reference value, and if the output value is greater than
the threshold value, then the class is selected. We further
improve the network by adding the threshold estimation
module which estimates the optimal threshold for each label
[18]. Instead of using the same predefined value for all
classes such as 0.5, the threshold estimation module is trained
to get different optimal values for each class to improve
performance.
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To demonstrate the effectiveness of MarsNet, it is applied
to an SPI task which is usually added as a supplementary
component in SurfaceMount Technology (SMT) assembly to
inspect whether the solder is applied properly on the PCB in
a screen printer. To the best of our knowledge, no research
has attempted to classify which components in a screen
printer are dysfunctional by examining multiple types of
defects occurred in a printed image of PCB. We validate our
work not only on a customized PCB dataset, but also on
VOC 2007 dataset. The superb performance demonstrates the
effectiveness of our network and supports pervasive use of
our network in a multi-label classification with various input
sizes.

The rest of the paper is organized as follows. In Section II,
we review the related work. Our proposed MarsNet is
described in Section III followed by extensive experimen-
tal validation in Section IV. Discussion points follow in
Section V, and we finally conclude our work in Section VI.

II. RELATED WORK
A. DILATED RESIDUAL NETWORK
Semantic segmentation has gained tremendous attention over
the past few years because it provides the most precise
information about the image by classifying every pixel in
the image. However, several challenges have brought up
in semantic segmentation, one of which is the poor fea-
ture resolution caused by pooling and striding which dis-
card detailed spatial information. In order to overcome this
challenge, [13], [14] suggested using dilated convolution,
also known as atrous convolution, to aggregate multi-scale
contextual information without losing resolution for dense
prediction. Similarly, [19], [20] employed the atrous algo-
rithm which expands receptive field without increasing the
number of parameters by inserting holes into the filters. The
low resolution of the feature maps extracted from the last
convolutional layer can be detrimental to image classifica-
tion or image segmentation. On the other hand, DRNs used
dilated convolutions to increase the receptive field of the
higher convolutional layers to make the last feature maps high
resolution [12].

B. SPATIAL PYRAMID POOLING
Existing CNNs typically result in reduced recognition accu-
racy for various size images because they require same size
input. For this reason, preprocessed images are fed into CNNs
as opposed to the raw images. To eliminate this issue, [15]
presented SPP which generates a fixed-length output regard-
less of image size or scale by using multi-level spatial bins.
This property enables SPP to pool features extracted at var-
ious scales. [21] introduced the idea of ‘‘pyramid match’’ to
find correspondences between unordered two sets of vectors
while maintaining robustness to clutter. Later, [22] presented
a kernel-based recognition method, Spatial Pyramid Match-
ing, based on the work of [21]. Motivated by SPP, [20]
developed Atrous Spatial Pyramid Pooling (ASPP) which
adds atrous convolution layers with different dilation rate in
parallel to capture the multi-scale information.

C. MULTI-LABEL CLASSIFCATION
The most classical approach to implement multi-label
classification is a problem transformation method, where
the multi-label problem is transformed into multiple single
label problems. For instance, Label Powerset (LP) consid-
ers each set of labels as one class, which makes the new
transformed problem a single label classification task. This
method, however, suffers from an extremely complex compu-
tation. One of the alternatives for better computation include
Binary Relevance (BR) [23] which works by decomposing
the multi-label task into multiple independent binary learn-
ing tasks. One downside of BR is that it neglects corre-
lation between labels. In order to compensate this down-
side, Classifier Chains (CC) was proposed [24]. In order
to boost the performance of multi-label classification, some
suggested combining several models instead of using just
one, which is called the ensemble method. The ensemble
methods which are improved upon LP and CC are RAKEL
[25] and ECC [24], respectively. Others presented adapting
existing single label algorithms to suit the multi-label clas-
sification, called adapted algorithm method. Some of the
well-known adapted algorithms are ML-KNN [26] and ML-
DT [27], algorithms developed based on kNN and decision
tree for multi-label problem, respectively. Over the past few
years, since deep learning has gained tremendous popularity,
a lot of research on multi-label classification using neural
network have been actively conducted. BP-MLL is the first
algorithm that utilized neural network on multi-label clas-
sification problem [28]. In order to boost the performance
of multi-label classification problems using neural networks,
[17] investigated the limitations of BP-MLL by replacing
the ranking loss with the cross entropy loss function. Later,
[18] further improved multi-label classification by introduc-
ing a new loss function for pairwise ranking and incorporat-
ing a label decision module into the model. Recently, [29]
showed state-of-the-art results by applying RNN in addi-
tion to CNN to exploit semantic label dependencies in an
image.

D. SMT INSPECTION
There have been a wide range of studies on inspecting defects
in PCB from using traditional machine learning methods
such as random forest [30] to using more modern deep
learning approach, utilizing multi-layer perceptron neural
network and convolutional neural network [31], [32]. Another
neural network based study incorporates fuzzy rule-based
method to correct any possible misclassification made by
the neural network module [33]. In addition, recently there
was a research which attempts to detect capacitor in PCB
using YOLO algorithm [34]. However, prior studies are con-
fined to either merely evaluating whether or not a com-
ponent is flawed after detecting the mounted components
or identifying each defect using a single-label classifica-
tion approach. This paper, on the other hand, tackles defect
identification in SMT, specifically in SPI using multi-label
classification.
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FIGURE 2. Structure of the proposed network.

FIGURE 3. Structural comparison of (a) ResNet, (b) DRN, and (c) mDRN. Each gray cube represents the output feature maps for each level in a
network. The blue region is the receptive field that is aggregated to the next level pixel connected by four dotted lines. (a) ResNet has progressively
shrinking output feature maps while (b) DRN maintains the sizes of feature maps at the higher two levels. (c) The sizes of feature maps in mDRN
are the same after downsampling once at the beginning.

III. PROPOSED NETWORK
In this section, we propose a novel network, MarsNet,
that performs a multi-label classification for images of
various sizes. Fig. 2 shows the structure of the proposed
MarsNet which is built based on the mDRN. It is consisted of
a Horizontal and Vertical Pooling (HVP), a multi-label scor-
ing module, and a threshold estimation module. The mDRN
and the newly designed HVP allow classification of images
of various sizes. To perform amulti-label classification, a sig-
moid cross entropy loss is employed to train our proposed
network. The threshold estimation module is additionally
applied to improve multi-label classification performance.

Let Xi be an input image and Yi = {Yij | ∀j ∈ [1,M ]} be
a set of corresponding ground-truth class labels, where Yij is
the individual class label in Yi, defined as follows:

Yij =

{
1, when j is relevant to i
0, otherwise,

(1)

i = 1, 2, · · · ,N , j = 1, 2, · · · ,M , N is the number of image
data samples, and M is the number of classes. Ŷi = {Ŷij |
∀j ∈ [1,M ]}, on the other hand, denotes a set of Ŷij which is
determined by MarsNet. For instance, suppose there are five
classes for a given input image X1. When the first and the
third classes are relevant to the image, the set of ground-truth
class labels can be denoted as Y1 = {1, 0, 1, 0, 0}. MarsNet
attempts to output Ŷ1 that is equal to Y1.

A. CLASSIFICATION FOR IMAGES OF VARIOUS SIZES
To classify images of various sizes, convolutional layers are
built based on mDRN, and spatial information of features in
the last feature maps is aggregated via HVP.

1) MODIFIED DILATED RESIDUAL NETWORK
An l-dilated convolution with the stride s, ∗l,s over the input
feature map f for each location n in the output of the l-dilated
convolution and a filter g can be defined as follows:

(f ∗l,s g)[n] =
∑
m

f [sn− lm]g[m] (2)

where l is the dilated factor. Note that the standard
convolution, ∗ is the same as ∗1,1.

DRN-A-16 [12] employs dilated convolutions at the fourth
and fifth levels in ResNet-18 [35] to solve low resolution issue
that occurs in traditional CNN models. DRN-C-26 further
improves DRN-A-16 by eliminating gridding artifacts with
the degridding scheme. DRN-D-22, a simplified version of
DRN-C-26, is employed as our backbone network. Since
DRN-D-22 utilizes 2 and 4-dilated convolutions at the first
two levels of the four levels, the size of the last feature
maps is reduced by a factor of 8 for each dimension com-
pared to the input image size. For example, if the size of
an SPI data image is 48 × 48, the size of the last feature
maps becomes 6 × 6. The low resolution output feature
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FIGURE 4. Layer architectures of (a) DRN-D-22 and (b) mDRN-D-22. Each rectangle represents a Conv-BN-ReLU group, and the numbers specify the filter
size and the number of channels in that layer. Blue colored rectangles are Conv-BN-ReLU groups with stride 2, and downsampling occurs in blue lines.
The purple colored rectangles adopt dilated convolutions rather than standard convolutions with the dilated factors described beneath each network
architecture. The networks are divided into levels, such that all layers within a given level have the same dilation and spatial resolution.

maps will cause performance degradation. To deal with a
wide range of PCB sizes, we modify DRN-D-22 to obtain
higher resolution feature maps and call this modified network
mDRN-D-22.

Fig. 3 depicts the structure of feature maps of different
networks. The feature maps of ResNet are progressively
scaled down by striding, and standard convolutions are
applied to all four levels, while DRN adopts dilated con-
volutions at levels 4 and 5, and the size of feature maps is
maintained at those levels. To get higher resolution feature
maps, we modify DRN by adopting dilated convolutions at
all four levels. Specifically, our mDRN-D-22 adopts dilated
convolutions with the dilation factors 2, 4, 8, and 16 at the
levels from 2 to 5, as shown in Fig. 4. Thus, the size of the
final feature maps is half of the input image size for each
dimension, and the resolution of the feature maps is high
enough to contain spatial information, which will then be
aggregated for classification. This allows classification even
if the input image is smaller than 224 × 224. In addition,
the dilation factor of the level 6 convolution layer is increased
from 2 to 4, thereby mitigating gridding artifacts more appro-
priately for higher dilation factors of mDRN-D-22 than
DRN-D-22.

The mDRN-D-22 appears to have the same network
structure as the DRN-D-22, including the channel sizes
and the number of layers. However, unlike the DRN-D-22,
the mDRN-D-22 applies convolutional layers that use dilated
convolution (the purple colored rectangles in Fig. 4) at levels
2, 3, 4, and 5 rather than standard convolution (the blue
colored rectangles in Fig. 4). Furthermore, another difference
between the mDRN-D-22 and the DRN-D-22 is that they use
different values for dilation factors. Although the difference
in the two models’ structure as well as dilation factors may
seem trivial in Fig. 4, the mDRN-D-22 empirically proves to
generate higher resolution feature maps, resulting successful
feature detection in smaller images. The positional informa-
tion of the higher resolution feature maps, generated from

the mDRN-D-22, can be more precisely aggregated using a
newly designed pooling layer, which will be explained in the
next section.

2) HORIZONTAL VERTICAL POOLING
We propose Horizontal and Vertical Pooling (HVP) to
perform a pooling in horizontal and vertical directions alter-
natively to aggregate spatial feature information from the
high resolution feature maps that we obtained from the
mDRN. While an ordinary pooling divides the feature map
into squares and performs pooling to pool the representative
value of each divided space proportional to the feature map,
HVP performs a pooling in two different directions: the first
part of the pooling occurs in horizontal direction and the sec-
ond part of the pooling occurs in vertical direction. We define
the size of HVP as a vector (p1, p2, · · · , pK ), where a pk × 1
horizontal pooling and a 1×pk vertical pooling are performed
for each pk , and K is the number of pooling processes. After
pooling processes, the pooled outputs are concatenated into a
vector. The output vector is (p1 + p1 + p2 + p2 + · · · + pK +
pK ) ∗ D = 2D(p1 + p2 + · · · + pK )-dimensional, where D
is the depth of the input feature map. By performing HVP at
multiple sizes, features at different scales can be extracted like
SPP. An example of HVP with the size of (4, 8) is depicted
in Fig. 5.

Since a horizontal pooling and a vertical pooling are
performed in series, the processes can locate the position
where the high-level feature is activated like SPP which exe-
cutes pooling in a square form. Thus, HVP provides similar
performance with less computational complexity than SPP.
HVP also obtains an output vector that is smaller than that
of SPP. Our mDRN-D-22 generates a high-resolution feature
map, allowing precise locational information to be extracted
from the last feature maps. Therefore, it is important to fully
exploit this advantage, and in order to do that, we utilize HVP.
The significance of using the proposed HVP after the mDRN
is that the feature values are pooled while considering the
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FIGURE 5. Process of horizontal vertical pooling (HVP) with the size of
(4, 8) for the feature maps with the depth D. The pooled output vector is
(4+ 4+ 8+ 8) ∗ D = 24D-dimensional.

location information, allowing a classification for images of
various sizes with high performance.

Since SPP has higher model complexity than HVP, SPP
may suffer from the overfitting problem. SPP as well as HVP
are expected to achieve improved performance when larger
pooling size is used. However, for SPP, the number of param-
eters that is required to be optimized is the squared amount
of the pooling size. Therefore, SPP has more difficulty in
training with higher dimensions than HVP because it is prone
to overfitting. HVP can aggregate finer spatial information
from the feature maps with less parameters to be trained and
is less likely to face the overfitting problem.

B. MULTI-LABEL CLASSIFICATION
The concatenated output vector from HVP undergoes a fully
connected layer, and the output of the fully connected layer
enters both multi-label scoring module and threshold estima-
tion module. Then the final class labels are estimated after
comparing the outputs from the two modules.

1) MULTI-LABEL SCORING MODULE
The multi-label scoring module includes a fully connected
layer. This fully connected layer reduces the dimension of the
output vector to match the number of classes. Output value of
j-th node in the fully connected layer, fij = fj(Xi) represents
the score of the corresponding class for the input Xi. The
following sigmoid cross entropy loss is used for multi-label
classification to train the proposed network:

L(X ,Y ) = −
1
N

N∑
i=1

1
M

M∑
j=1

[Yij log(σ (fij))

+ (1− Yij) log(1− σ (fij))] (3)

where σ (·) is a sigmoid function.

2) THRESHOLD ESTIMATION MODULE
A label confidence threshold is a reference value for deter-
mining whether or not a class should be labeled. To estimate
the optimal threshold, the threshold estimation module which
consists of three fully connected layers is provided. The first

two layers are used to increase the complexity of the module
and the last layer is used to reduce the dimension of the output
vector to match the number of classes. The module is placed
in parallel with the multi-label scoring module. The output of
the fully connected layers which is initialized with random
weights in the beginning is a vector of each label confidence
threshold, θj ∈ R. When training MarsNet in which threshold
estimation module is applied, the following sigmoid cross
entropy loss is used to obtain the optimal threshold values:

Lthreshold(X ,Y ) = −
1
N

N∑
i=1

1
M

M∑
j=1

[Yij log(δ
ij
θ )

+ (1− Yij) log(1− δ
ij
θ )] (4)

where δijθ = σ (fij − θj).

3) DECISION MAKING
A set of class labels for each input image Xi, Ŷi is decided as
follows:

Ŷi = {Ŷij | Ŷij = [fij > θj],∀j ∈ [1,M ]} (5)

where [·] denotes the Iverson bracket. Based on the above
equation, the proposed MarsNet selects the class j whose
score value, fij, from the multi-label scoring module is
greater than the corresponding threshold from the threshold
estimation module, θj.

IV. EXPERIMENTS
It is important to note that Solder Paste Inspection (SPI) task
is to classify multiple types of defects occurred in the screen
printer by observing the entire PCB image at once. In prac-
tice, the size of PCB image which depends on the actual size
of PCB comes in a wide range. Therefore, it is different from
image segmentation and classification because their intent
is to classify multi-scale objects in an image per pixel and
object, respectively. Therefore, in addition to evaluating our
model on VOC 2007 dataset, we also performed experiments
using customized SPI image dataset as to verify MarsNet.
The SPI image dataset of various sizes was used to examine
differently conditioned models as an ablation study.

A. SPI IMAGE DATASET
Solder Paste Inspection (SPI) inspects the volume of solder
paste that is printed on each pad, from which SPI determines
whether the paste is printed excessively, insufficiently, or ade-
quately. From this information, an excess map and an insuf-
ficient map are generated independently as binary maps. The
following describes how excess and insufficient maps are cre-
ated: first, SPI data is composed of the following information:
x and y distances from the top left corner as well as the volume
of the paste printed on each pad. Secondly, a 2-dimensional
image is created by sorting x-distance/y-distance sequentially
where pad exists and making the index of sorted x-distance/
y-distance as x-coordinate/y-coordinate. We denoted the
binary map as excess/insufficient map if the pixel value
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FIGURE 6. Sample SPI image data of each defect: (a) squeegee blade defect, (b) support defect, (c) paste roll pause defect, (d) solder kneading
defect, and (e) clamp defect. For each defect, the left image shows the corresponding defect on the PCB and the right image visualizes the SPI
image actually used as an input to MarsNet. Each image size is represented on the top of the image. (Blue channel: excess map, Green channel:
insufficient map.)

of the pad with excess/insufficient paste volume is 1 and
the rest is 0. The SPI image dataset consists of two chan-
nel images: one for an excess map and the other for an
insufficient map.

Nine different datasets of PCB with various sizes were
created, each of which consists of 8,400 SPI images. Four
sets of dataset were used to train and the other five sets
were used to test. Each image is labeled as the correspond-
ing PCB printer defects. 5 defects which are the common
errors that occur in the PCB screen printer were considered:
squeegee blade defect, support defect, paste roll pause defect,
solder kneading defect, and clamp defect. Sample images
of each defect are shown in Fig. 6. We visualize the SPI
image as an RGB image: the blue channel for the excess
map and the green channel for the insufficient map. For SPI
images, pixel in an image with all RGB values of 0 is dis-
played in white for convenient observation. It is worth noting
that more than one defect can appear simultaneously in the
same PCB. In this paper, we conducted experiments on SPI
datasets which, at most, two defects were present at the same
time.

Asmentioned, the SPI image dataset consists of nine image
sets of different sizes. Therefore, we configured each image
batch with the same size images and used it for batch training.
There are datasets consisting of images of various sizes other
than the SPI image dataset; however, for those datasets, batch
training can not be performed because each image has a
different size. To the best of our knowledge, there is no dataset
that can be organized as image batches with different sizes
and has multiple labels on each image at the same time.
For this reason, we conducted experiments on the SPI image
dataset.

B. TRAINING SETUP
Multiple experiments on SPI datasets of various sizes were
conducted for differently conditioned models for an ablation
study, as shown in Table 1. All of these models were exe-
cuted with the multi-label scoring module. The first two fully
connected layers with the sizes of 100 and 10 were applied
in the threshold estimation module. For the models that the
threshold estimationmodule was not applied, each score from
themulti-label scoringmodule was compared to the threshold
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value of 0.0 to determine whether the corresponding defect
occurred or not (see (5)). Each model was based on either
ResNet-18, DRN-C-26, DRN-D-22, or mDRN-D-22. For the
models with HVP, HVP with the size of (8) was performed
using a max pooling, while for the models without HVP,
global average pooling was applied. It is MarsNet that applies
all the threshold estimation, mDRN-D-22, and HVP.

The purpose of the experiments is to detect multiple types
of defects that have occurred in PCB. However, it is also
important to determine which defects have not occurred.
Therefore, the performance was evaluated in terms of
(1 − HL) in % where HL denotes Hamming loss defined as
follows:

HL =
1
NM

N∑
i=1

M∑
j=1

Yij ⊕ Ŷij (6)

where ⊕ denotes the exclusive-or, and Yij is the individual
class label in a set of corresponding ground-truth class labels,
Yi. Ŷi is a set of Ŷij which is determined from the network. N
is the number of image data samples, andM is the number of
classes. (1 − HL) represents the percentage of the correctly
determined labels among the total number of labels.

From the SPI image dataset, we formed image batches so
that each batch consists of the same size images and used
them for batch training. Adam optimizer was used to train the
networkwith a learning rate of 0.01 for the layers in themulti-
label scoring and threshold estimation modules, and learning
rate of 0.001 was used for the rest of the layers. The learning
rate was reduced by a factor of 10 for every 10 epochs.
20 epochs with the batch size of 40 were trained in total.
Learning rate is not a significant factor in performance, but
learning rate greater than the assigned learning rate can cause
overfitting. During testing, each image batch is classified by
the trained network, and the averaged accuracy is measured
in terms of (1− HL) in % as mentioned.

C. EXPERIMENTAL RESULTS
1) PERFORMANCE COMPARISONS
The experimental results are summarized in Table 1 and
visualized in Fig. 7 for performance comparison at a glance.
We will use the term, baseline model, for the model that
integrates ResNet-18 with global average pooling layer with-
out the threshold estimation module, as noted in the footnote
below Table 1. MarsNet refers to the model that integrates
mDRN-D-22 with both HVP and the threshold estimation
module. Performance changes based on each condition are
clearly displayed. For various input sizes, ResNet-18 alone,
without threshold estimation module and HVP, exhibited the
lowest accuracy of 92.18%. By either adopting threshold esti-
mation module or HVP in ResNet-18, the accuracy increased
by 0.18% and 0.57%, respectively. However, when the thresh-
old estimationmodule andHVPwere applied to ResNet at the
same time, accuracywas lower by 0.65% thanwhenHVPwas
applied without threshold estimation module.

TABLE 1. Experimental results of differently conditioned models where
the last model indicates MarsNet in terms of accuracy in % for the SPI
image dataset of various sizes.

FIGURE 7. Visualization for performance comparison. Differently
conditioned models are indicated by + and − signs for an ablation study.
+ indicates the presence of the feature (threshold estimation or/and
HVP), whereas − indicates the absence of the feature. Performances of
different convolutional layer architectures are plotted with different
colors: black for ResNet-18, green for DRN-C-26, blue for DRN-D-22, and
red for mDRN-D-22.

Overall, DRN-C-26 exhibited better performance than
ResNet-18 as expected with 94.85% accuracy when HVP
was implemented, which was the highest accuracy achieved
by the DRN-C-26. DRN-D-22 showed similar accuracy to
the DRN-C-26, while the DRN-D-22 showed approximately
1% better accuracy than the DRN-C-26 under the condition
where neither HVP nor the threshold estimation module is
employed. ThemDRN-D-22 achieved similar performance to
that of DRN-D-22, but attained slightly higher accuracy than
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the DRN-D-22 in all conditions. Regardless of whether either
threshold estimation module or HVP was applied or not, both
DRN-D-22 and mDRN-D-22 showed strong performance.

However, when both threshold estimation module and
HVP are applied, the performance of mDRN-D-22 increases,
displaying the highest accuracy among all models, whereas
performance of DRN-D-22 rather decreases. In fact, for all
models except the following two models: mDRN-D-22 with
HVP and ResNet-18 without HVP, applying threshold esti-
mation module rather degraded the classification perfor-
mance instead of enhancing it.We suspect that when applying
HVP, it is possible to aggregate meaningful features in the
last feature maps, and only mDRN can extract the last fea-
ture maps of high resolution, which contain enough precise
positional information to be aggregated by HVP. The low
resolution last feature maps of ResNet showed improved
performance with the application of the threshold estimation
module when HVP was not applied. However, the improved
performance was lower than that of mDRN with HVP. This
signifies that training an appropriate threshold value for each
defect, after spatial features of each set of feature maps are
pooled by the appropriate pooling method, improves the clas-
sification performance. For SPI tasks with images of various
sizes, the best performance was achieved by pooling the high
resolution feature maps of mDRN using HVP and applying
the threshold estimation module. That is, MarsNet showed
the best performance.

MarsNet, mDRN-D-22 with the addition of HVP and the
threshold estimation module, showed an accuracy of 95.11%.
When going down a row in Table 1, increasing trend in
performance from the very first row, the baseline model,
to the last row, the proposed MarsNet, can be seen. This
is because a model in a row is an improved version of
the model that is above by adding additional threshold esti-
mation module or horizontal and vertical pooling layer or
both. In addition, change in the convolutional layers also
resulted in better performance in the downward direction.
The final model, MarsNet, showed accuracy improvement of
2.93% compared to the baseline model which is built upon
ResNet-18 with global average pooling without the threshold
estimation module.

Experiments were also performed on each PCB SPI image
dataset separately based on the size of SPI images. Five
PCB datasets with different sizes were provided and the PCB
image sizes are shown in Table 2. Each dataset consists of
8,400 PCB images. The baseline model and MarsNet, each
with HVP and the threshold estimation module, were indi-
vidually trained and tested for the given datasets. MarsNet
outperformed the baseline model on the four out of the five
datasets. MarsNet showed lower performance than the base-
line model for the dataset of size 341×397, but the difference
is insignificant. In particular, MarsNet showed significantly
better performance than the baseline model for datasets with
SPI image sizes of 75 × 121 and 110 × 110. This result
confirmed that MarsNet resolved performance degradation
due to the low resolution of the last feature maps of the

TABLE 2. Classification accuracies for individual PCB SPI image datasets
with different sizes.

TABLE 3. Classification accuracies for the SPI image dataset to compare
the performances of HVP and SPP under the following conditions.

baseline model for datasets with image sizes much smaller
than 224× 224.

2) PERFORMANCE ANALYSES - POOLING
LAYER COMPARISON
More experiments were conducted to further analyze and
compare the performances of HVP and SPP. In Table 3,
the first division compares the performances of HVP and
SPP when multiple levels of pooling layer are involved,
and the second division compares the performances of HVP
and SPP when only one level of pooling layer is involved.
As shown in the table, HVP with only one level pooling layer
with pooling dimension of 8 achieved the highest accuracy.
We initially expected performance to achieve better accuracy
as the pooling dimension becomes higher. However, the per-
formance decreased as the pooling dimension got bigger.
This phenomenon can be seen predominantly in SPP where
performance drops dramatically from {8 × 8} to {16 × 16}.
This is largely due to overfitting. Overall, based on empirical
results, we can conclude that conserving the original structure
of SPP, i.e. pooling in multiple levels in pyramidal fashion is
indeed appropriate, while for HVP, it is more appropriate to
perform pooling in just one level.
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FIGURE 8. Visualized results of the last feature maps extracted by the baseline model and MarsNet in the middle and on the right, respectively, when
each SPI image data on the left was given. Below each SPI image on the left, the ground truth defects are displayed. Below each set of feature maps in
the middle and on the right, the defects determined by each model are displayed.

The reason for pyramidal pooling in SPP is to observe an
image in multi-scale. Therefore, pyramidal pooling occurs
in multiple levels in different sizes. However, pooling mul-
tiple times in different scales is not necessary when the
mDRN-D-22 is used since it is able to take in multi-scale
images as input to the network, which is why HVP is able to
achieve higher accuracy in addition to themDRN-D-22. From
this, we can infer that the mDRN-D-22 and HVP complement
each other in MarsNet.

Moreover, when training, the batch size was initially set to
40 for all conditions; however, it was later reduced to 30 for

some trainings that involved SPP because the GPU memory
was not sufficient enough to train when the batch size was
set to 40. This indicates that HVP is computationally more
efficient than SPP.

3) PERFORMANCE ANALYSES - FEATURE MAP
VISUALIZATION
We also visualize howwellMarsNet generates the last feature
maps with high resolution in Fig. 8. In the figure, the images
on the left represent SPI image data that are smaller than
224 × 224. Given these images as input, the images in the
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middle and on the right show the feature maps extracted from
nine randomly chosen filters among a total of 512 filters in the
last convolutional layer of the baseline model and MarsNet,
respectively. The ground truth class labels of the input are
defined below each image on the left, and the predicted class
labels from the baseline model and MarsNet are respectively
defined below each image in the middle and on the right.
As shown in Fig. 8, it is clear that the last feature maps
of MarsNet which is based on the mDRN-D-22 contains
more useful spatial information with higher resolution. The
resolution of the last feature maps in the middle column is
too poor to precisely extract any features of interest in the
images. On the contrary, the images on the right were able
to precisely locate where the inadequate amount of solder
paste was printed on the PCB. This is the reasonwhyMarsNet
was able to correctly detect all the defects, while the baseline
model was not able to. This kind of phenomenon could be
easily found in small PCBs.

Specifically, Fig. 8(a) shows the example of ‘support’
defect which is manifested in a circular part in blue. Since the
original input SPI image has 110×110 size, the feature maps
generated from the baselinemodel have the size of 4×4which
has insufficient information to correctly classify defects.
On the other hand, the feature maps from MarsNet were able
to retain the circular features, allowing the ‘support’ defect
to be correctly classified. Likewise, as shown in Fig. 8(b) of
the ‘squeegee blade’ and ‘solder kneading’ defects example,
most feature maps generated from MarsNet, contrary to the
baseline model, contain features of ‘squeegee blade’ defect
in the blue vertical line on the right-hand side of the map.
Also, the ‘solder kneading’ defect, which is evidently shown
in small green and blue dots in the left half of the input image,
is well extracted in the feature maps of MarsNet. Particularly,
it can be seen vividly in the left half of of the feature maps of
MarsNet as a 180 degree rotated (CW) L-shape in blue and
green colors. For the last example of ‘support’ and ‘paste roll
pause’ defects in Fig. 8(c), the ‘support’ defect is presented
in circular parts in blue and the ‘paste roll pause’ defect is
presented in a green vertical line on the left-hand side of the
SPI image.MarsNet precisely aggregated those featured parts
in the feature maps of size 55× 55.

4) PERFORMANCE ANALYSES - VISUAL
PERFORMANCE EXPLANATION
For in-depth analysis, we used Grad-CAM [43] to visualize
the performance of HVP and SPP. The images in Fig. 9 are
feature maps that are extracted from the Grad-CAM algo-
rithm, where red highlights indicate activated areas by Grad-
CAM. The top of the figure is the output of Grad-CAM using
HVP and the bottom is the output of Grad-CAM using SPP.
Each output image contains five subset images, each of which
is the output of Grad-CAM looking for a ‘squeegee blade’
defect, ‘support’ defect, ‘remove area’ defect, ‘solder no
kneading’ defect, and ‘clamp’ defect from left to right. Each
set of image contains results of HVP (top) and SPP (bottom)
of the same input PCB image.

The correct classification for the first set is both of ‘solder
no kneading’ defect and ‘clamp’ defect, as shown in Fig. 9(a).
Looking at the fourth image in particular, Grad-CAM image
using HVP focused on the small green areas in the upper
half of the image which is crucial for classifying ‘solder no
kneading’ defect accurately. Grad-CAM image using SPP,
on the other hand, failed to focus on those areas adequately.
Because of this, HVP was able to classify both correctly,
while SPP was only able to classify ‘clamp’ defect correctly.
This example manifests HVP’s strong performance when
small image or feature is given.

Furthermore, the correct classification for the second set
is ‘squeegee blade’ defect, as shown in Fig. 9(b). However,
looking at the first and the second subset images, SPP focuses
on the areas that are unnecessary for correct classification,
whereas HVP only focuses on the area necessary for cor-
rect classification. Specifically, for the correct classification,
the model should have focused on the blue vertical area
in the left hand side in the first image, which both HVP
and SPP were able to do; however, SPP not only focused
on the blue region, but also other irrelevant regions. For
instance, the second image contains no feature that indicates
the presence of ‘support’ defect; however, SPP focused on
the meaningless area, leading to an incorrect classification.
Yet again, in Fig. 9(c), SPP makes a similar mistake. The
correct classification is ‘solder no kneading’ defect. However,
by focusing on the insignificant bottom area in the second
image, the model using SPP incorrectly classified the defect
as ‘support’ and ‘solder no kneading’ defects. Meanwhile,
the model using HVP was able to correctly classify the defect
by only focusing on the green areas in the upper half of
the fourth image. Lastly, the correct classification for the
fourth set is both ‘remove area’ and ‘solder no kneading’
defects, as shown in Fig. 9(d). However, the model using
SPP was unable to classify ‘remove area’ defect correctly
because it missed the long green vertical feature which is
pivotal feature for classifying ‘remove area’ defect in the third
image. Contrarily, as shown in the figure, HVP successfully
concentrated on the long vertical green area. This example
demonstrates that HVP performs more effectively than SPP
when either long vertical or horizontal feature is present in
the image.

V. DISCUSSIONS
A. MULTI-LABEL IMAGE CLASSIFICATION
The experiments on the SPI image dataset were conducted
through testing the models that were trained with the images
having more than 2 different sizes, and such testing process
is different from the other benchmark tests publicly available.
Nonetheless, in order to compare our proposed network with
the other methods, we conducted additional experiments on
the VOC 2007 multi-label image classification dataset [44].
Models were trained on the trainval dataset of the VOC
2007 dataset and tested on the test dataset of the dataset.
For data augmentation, resizing, cropping, and horizontal
flipping were randomly applied to the trainval dataset, while
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FIGURE 9. Images of feature map that are extracted from the Grad-CAM algorithm, each of which is the output of Grad-CAM looking for ‘squeegee
blade’, ‘support’, ‘remove area’, ‘solder no kneading’, and ‘clamp’ defects from left to right. Red highlights show where each model focused on when
detecting each defect.

cropping and random resizing were applied to the test dataset.
For each object class, performances were compared in terms
of the average precision as well as the mean of all the average
precision, as listed in Table 4. Since our network employs the
threshold estimation module to train the best threshold values

which obtain the best precision and recall, the performance
of our network was measured by the precision for each object
class instead of the average precision. Then, we compared the
calculated precision with the average precision calculated in
the other methods.
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TABLE 4. Comparisons on the VOC 2007 multi-label classification dataset with the other methods.

Since our network needs to be trained under the same
experimental setting as the other methods, we used a different
backbone network and training setup. The VOC 2007 dataset
consists of images of objects, and the trained model classifies
multiple objects presented on each image. Objects in an
image represent more complicated features than excess or
insufficient map in a SPI image, hence we used a deeper
network, mDRN-D-38, which is the modified version of
DRN-D-38. Similar to the mDRN-D-22, the mDRN-D-38
employs dilated convolutions to the levels from 2 to 5 while
DRN-D-38 employs dilated convolutions to the 4 and 5 levels.
mDRN-D-38 has 6, 8, 12, and 6 numbers of Conv-BN groups
for the levels 2, 3, 4, and 5, respectively. Such structure can
extract more complicated features from object images. Since
all the images have size of 224 × 224, the size of the last
feature maps from our network is 112×112. We used the (4)
size HVP. During training with the batch size of 40, the best
performing model up to 50 epochs was stored. The learning
rate was set to 0.00001 for the feature layers and 0.0001 for
the other layers, and the value of learning rate was decreased
by 0.1 every 20 epochs.
All the compared methods are based on CNN.

Recently proposed methods for multi-label classification
adopt a subsidiary process such as a region proposal strategy
or consideration of label correlations. In this section, some
compared methods use the region proposal strategy to find
several possible regions containing a certain object in an
image and classify the object in each region [37], [39]–[41].
Some other methods consider the correlations between class
labels to enhance multi-label classification performance [29],
and the rest methods use both region proposal strategy and
the strategy considering label correlations [38], [42]. Since
we focus on the specific purpose of the SPI image datasets,
which is to classify multiple defects on SPI images having
various sizes, our network used neither the region proposal
strategy nor the label correlation strategy when designing
the network. Although the multi-label image classification
experiments were performed for the image dataset consisting
of the same size images, which is different from our purpose,
our network showed competitive performance. Moreover, our
network outperformed the other methods, for classes like car,
dog, and tv. The region proposal strategy is not suitable for
our purpose because the features of the defects are presented

not only in specific parts of the SPI image, but also in the
whole part of the SPI image. We consider adding a label
correlation strategy to enhance classification performance for
the future work.

VI. CONCLUSION
We proposed MarsNet, a CNN based end-to-end network for
multi-label classification which is also able to take inputs of
various sizes. In order to make this possible, the mDRN was
first applied to preserve the resolution of the feature maps
throughout the convolutional layers by allowing a small filter
to have a wide receptive field. Then, HVP was newly imple-
mented to extract spatially meaningful information as well as
to increase the computational efficiency during the process
of pooling. Lastly, the multi-label scoring module and the
threshold estimation module were employed for multi-label
classification. We conducted experiments with input images
of various sizes to verify the effectiveness of our network. The
experimental results on the customized SPI dataset as well as
VOC 2007 dataset demonstrated excellent performance of the
proposed network. Recently, understanding the correlation
between labels in multi-classification problems has been rec-
ognized as an important research topic. For the future work,
we plan to exploit the correlation between the classes present
in the image to improve the performance of our work.
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